КЛАССИФИКАЦИЯ СКАНИРОВАННЫХ ДОКУМЕНТОВ С ИСПОЛЬЗОВАНИЕМ СВЕРТОЧНОЙ НЕЙРОСЕТИ
- 30 мая 2021 г.
- 1 мин. чтения
Обновлено: 27 окт. 2021 г.
Аннотация:
В настоящее время одной из актуальных задач автоматизации документооборота организации в условиях поступления разнообразной документации от большого количества контрагентов является проверка и классификация сканированных материалов. В статье представлен анализ и основные характеристики существующих способов решения данной задачи.
Целью исследования является разработка программного модуля, позволяющего классифицировать документы с точностью не менее 97 % в режиме реального времени, что актуально для электронного документооборота в крупных и средних компаниях.
Приведено описание решения поставленной задачи на основе сверточной нейросети (CNN - Convolutional Neural Network). Входными данными для программного модуля является pdf-файл сканированного документа, выходными данными является xml-файл с классом документа.
Для повышения точности и скорости работы программы были решены задачи по кодированию сигнала для нейронной сети и определению ее структуры. Приведено описание этапов обработки сканированных документов и архитектуры разработанной нейросети.
Предложенный метод классификации позволяет классифицировать страницы с высокой точностью на небольшом датасете. Проведено тестирование программы на датасете из 9628 страниц и 22 возможных классов. Точность составила 99,1 %. Время классификации одной страницы без учета чтения файла и копирования в GPU составляет 2 мс на GeForce 780TI. Полное время классификации страницы составляет примерно 22,3 мс.

Комментарии